抱歉,您的浏览器无法访问本站

本页面需要浏览器支持(启用)JavaScript


了解详情 >

LOJ 6065

题解

总的分为两种情况:\(1+1+2+2\)\(1+1+1+3\)

对于第一种情况,我们假设边长为 \(k\)\(6\) 根棒子长度为 \(k,k,x_1,k-x_1,x_2,k-x_2\),并且强制 \(x_1\ge x_2\ge k-x_2\ge k-x_1\)

我们记 \(cnt_i\) 表示长度为 \(i\) 的棒子的数量,我们从小到大枚举 \(x_1\),同时维护 \(cntt_i\) 表示在长度小于 \(x_1\) 的棒子中选出两根拼成长度为 \(i\) 的方案数。

具体计算的时候,为了避免算重,我们分三种情况进行计算:

  1. \(x_1 > x_2 > k-x_2 > k-x_1\),枚举 \(k\),方案数为 \(cnt_{x_1}\times cnt_{k-x_1}\times cntt_{k}\times C_{cnt_k}^2\)
  2. \(x_1 = x_2 > k-x_2 = k-x_1\),同样枚举 \(k\),方案数为 \(C_{cnt_{x_1}}^2\times C_{cnt_{k-x_1}}^2\times C_{cnt_k}^2\)
  3. \(x_1 = x_2 = k-x_2 = k-x_1\),此时 \(k=2x_1\),方案数为 \(C_{cnt_{x_1}}^4\times C_{cnt_{2x_1}}^2\)

对于第二种情况,假设棒子长度为 \(k,k,k,x_1,x_2,k-x_1-x_2\),强制 \(x_1\ge x_2\ge k-x_1-x_2\)

同样记录 \(cnt_i\),然后从小到大枚举 \(x_1\),同时记录 \(cntt_i\)

也分为三种情况:

  1. \(x_1 > x_2 > k-x_1-x_2\),枚举 \(k\),方案数为 \(cnt_{x_1}\times cntt_{k-x_1}\times C_{cnt_k}^3\)
  2. \(x_1 = x_2 > k-x_1-x_2\),枚举 \(k\),方案数为 \(C_{cnt_{x_1}}^2\times cnt_{k-2x_1}\times C_{cnt_k}^3\)
  3. \(x_1 = x_2 = k-x_1-x_2\),此时 \(k=3x_1\),方案数为 \(C_{cnt_{x_1}}^3\times C_{cnt_{3x_1}}^3\)

时间复杂度 \(O(n^2)\)

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <cstdio>
#include <cctype>
#include <algorithm>
#include <cstring>
int read(){
register int x = 0;
register char ch = getchar(), f = 1;
for (; !isdigit(ch); ch = getchar()) if (ch == '-') f = !f;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ '0');
return f ? x : -x;
}
#define N 5005
#define M 10000005
int n, m, a[N], cnt[M], cntt[M];
long long ans;
long long C2(long long x){ return x < 2 ? 0 : x * (x - 1) / 2; }
long long C3(long long x){ return x < 3 ? 0 : x * (x - 1) * (x - 2) / 6; }
long long C4(long long x){ return x < 4 ? 0 : x * (x - 1) * (x - 2) * (x - 3) / 24; }
int main(){
n = read();
for (register int i = 1; i <= n; ++i) a[i] = read(), ++cnt[a[i]];
std :: sort(a + 1, a + 1 + n);
m = a[n];
n = std :: unique(a + 1, a + 1 + n) - a - 1;
for (register int i = 1; i <= n; ++i){
for (register int j = i + 1; j <= n && a[j] - a[i] < a[i]; ++j)
ans += 1ll * cntt[a[j]] * cnt[a[i]] * cnt[a[j] - a[i]] * C2(cnt[a[j]]),
ans += 1ll * C2(cnt[a[i]]) * C2(cnt[a[j] - a[i]]) * C2(cnt[a[j]]);
if (a[i] * 2 <= m) ans += 1ll * C4(cnt[a[i]]) * C2(cnt[a[i] * 2]);
for (register int j = i + 1; j <= n; ++j){
ans += 1ll * C3(cnt[a[j]]) * cnt[a[i]] * cntt[a[j] - a[i]];
if ((a[i] << 1) < a[j] && a[j] < a[i] * 3)
ans += 1ll * C3(cnt[a[j]]) * C2(cnt[a[i]]) * cnt[a[j] - (a[i] << 1)];
if (a[j] == a[i] * 3) ans += 1ll * C3(cnt[a[j]]) * C3(cnt[a[i]]);
}
for (register int j = 1; j < i; ++j)
if (a[i] + a[j] <= m) cntt[a[i] + a[j]] += cnt[a[i]] * cnt[a[j]];
if ((a[i] << 1) <= m) cntt[a[i] << 1] += C2(cnt[a[i]]);
}
printf("%lld\n", ans);
}

评论